
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. (2010)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.1016

RESEARCH ARTICLE

An efficient mesh-based multicast routing protocol
in mobile ad hoc networks
Eric Astier1, Abdelhakim Hafid1∗ and Sultan Aljahdali2

1 Network Research Lab, University of Montreal, Canada
2 College of Computer Sciences and Information Systems, Taif University, Saudi Arabia

ABSTRACT

Mesh-based multicast routing protocols for mobile ad hoc networks (MANETs) build multiple paths from senders to
receivers to deliver packets even in the presence of links breaking. This redundancy results in high reliability/robustness but
may significantly increase packet overhead. This paper proposes a mesh-based multicast protocol, called centered protocol
for unified multicasting through announcements (CPUMA), that achieves comparable reliability as existing mesh-based
multicast protocols, however, with significantly much less data overhead. In CPUMA, a distributed core-selection and
maintenance algorithm is used to find the source-centric center of a shared mesh. We leverage data packets to center the
core of each multicast group shared mesh instead of using GPS or any pre-assignment of cores to groups (the case of existing
protocols). The proposed centering scheme allows reducing data packet overhead and creating forwarding paths toward the
nearest mesh member instead of the core to reduce latency. We show, via simulations, that CPUMA outperforms existing
multicast protocols in terms of data packet overhead, and latency while maintaining a constant or better packet delivery
ratio, at the cost of a small increase in control overhead in a few scenarios. Copyright © 2010 John Wiley & Sons, Ltd.

KEYWORDS

MANETs; multicast routing protocols; mobility

*Correspondence

Abdelhakim Hafid, Network Research Lab, University of Montreal, Canada
E-mail: ahafid@iro.umontreal.ca

1. INTRODUCTION

Ad hoc networks are infrastructure-less, dynamically recon-
figurable wireless networks that consist of nodes that act as
routers. In such an environment, we face the problem of pro-
viding a multicast routing protocol capable of handling high
mobility, high traffic load and the ability to handle multiple
sources and multiple large multicast groups. Depending on
how the routes connect the multicast members with each
other, we can basically distinguish two major categories of
protocols [1,2]: mesh-based and tree-based protocols [3].

The key difference between multicast meshes and mul-
ticast trees is that in a multicast mesh data packets are
transmitted over more than one path [4,5]. In a mesh-based
protocol, if one path is broken other redundant paths deliver
the multicast packets; network structure reconstruction is
less frequent and produces lower control overhead. A mesh-
based protocol thus benefits from an increased robustness
at a cost of redundancy in data transmissions and thus low-
ered efficiency. Existing mesh-based approaches seldom try
to reduce the data packet overhead; concentrating solely on
robustness. Mesh-based approaches that rely on the senders

to maintain the mesh have the drawback of multiple con-
trol packet floods per multicast group. Some mesh-based
approaches select one or more receivers as multicast group
leaders (referred to as core nodes) to maintain the mesh and
reduce network wide flooding [6,7].

In this paper, we propose centered protocol for uni-
fied multicasting through announcements (CPUMA), a
mesh-based protocol that provides robustness and reduces
overhead, compared to existing protocols, by (1) periodi-
cally centering the core of the mesh at the intersection of
data sources; (2) not allowing nodes on the periphery of the
mesh to rebroadcast data packets emanating from inside the
mesh in order to reduce unnecessary data packet forward-
ing; and (3) creating forwarding paths toward the nearest
mesh member instead of the core of the mesh to reduce
latency and take advantage of the robustness of the mesh
sooner than later. Without centering the core node, receivers
will form a mesh around a core node that may move to the
edge of the network creating long single-use paths. The
paths, created to a core node that is at the center of the
sources, are shorter, more robust around the area data pack-
ets must traverse and are able to reach multiple receivers.

Copyright © 2010 John Wiley & Sons, Ltd.

An efficient mesh-based multicast routing protocol E. Astier et al.

Forcing mesh members on the periphery of the mesh to
not forward packets received from within the mesh, results
in a considerable amount of data packets not forwarded in
the network. This considerably reduces data overhead com-
pared to existing protocols (e.g., PUMA [8]). Source nodes
outside the mesh forward data packets toward the nearest
mesh member instead of the core node. The sooner a data
packet reaches the mesh the sooner it can take advantage of
multiple paths in the mesh; this allows reducing lost data
packets and thus increasing robustness. Forwarding data
packets from the source to the nearest mesh member allows
also CPUMA to properly elect the core node to be the node
at the center of the sources.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 describes details
of the proposed multicasting protocol. Section 4 shows
the effectiveness of the protocol via simulations. Section
5 concludes the paper.

2. RELATED WORK

Multicast ad hoc on-demand distance vector (MAODV) is
a well known tree-based protocol that creates and main-
tains a bi-directional shared-tree for each multicast group
[9,10]. Receivers join a tree by broadcasting a route request
join packet, and receiving a route reply join packet when
a tree member is found. Nodes along the path, to the node
that responded, add routing entries when they receive route
replies, thus creating the forwarding path. The freshest route
with the highest sequence number and least amount of hops
to the tree is grafted to the tree by a multicast activation
packet. The activation packet is forwarded along the for-
warding path until reaching a node in the tree. The first
node to join a group in each multicast tree is the group
leader. Periodic group hellos are transmitted by the group
leader to announce and maintain the tree. A broken link in
the tree is detected by the failure to receive transmissions
from a neighboring node closer to the group leader. The
node (one of the nodes connected by this link) that is the
farthest from the group leader attempts route reconstruction
to repair the broken link. In a high mobility scenario, link
breaks are to be expected and cause the tree to be in a con-
stant state of reconstruction. In a high traffic load scenario,
hello packets are lost due to collisions which yield ‘apparent
link breaks’ and triggers unnecessary route reconstruction
[11]. This constant reconstruction results in the flooding
of control packets further exacerbating the problem and
degrading performance significantly.

Robust multicasting in ad hoc networks using trees
(ROMANT) is a tree-based protocol that solved the problem
of fixing broken links in MAODV by avoiding it altogether
and instead reusing the group hellos to periodically recon-
struct the group [11]. ROMANT implements a distributed
algorithm to elect one of the receivers of a multicast group
as the core of the group. Receivers periodically transmit a
‘join’ announcement, selecting the neighbor node closer to
the group leader as the next hop. Receivers know which

neighbor node is closest to the group leader from the recep-
tion of group hellos. Thus, a ‘join’ announcement triggers
the generation of join announcements by all nodes lying
on a shortest path between the receiver and the core. The
announcements eventually reach the group leader to form
the tree. Senders send data to the group along the shortest
path between the sender and the core of the group. Once
the data packet reaches a tree member, it is flooded within
the tree. The protocol rebuilds an optimal tree every 3 s.
If a broken link is detected between rebuilds via the lack
of an implicit acknowledgement, nodes can use alternate
next hops. However, like other tree-based protocols, broken
branches result in packets being lost [12,13].

The Protocol for Unified Multicast Announcements
(PUMA) can operate as a tree or a mesh-based protocol.
It evolved from ROMANT and it uses a single type of con-
trol packet, called the Multicast Announcement (MA) [8].
The MA is used to elect cores, join and leave the mesh,
update the mesh, and allow nodes outside of the mesh to
find routes toward the core. Cores are elected by a dis-
tributed algorithm. A node without a route to a multicast
group core declares itself as the core and transmits a MA
to its neighbors. The neighbors propagate the best received
MA, considering a high node ID better than a low node
ID. Each receiver connects to the core along all the shortest
paths between it and the core forming a mesh with all the
nodes along the shortest paths to the core. A ‘parent’ field
in the MA contains the address of the neighbor closest to
the core. A non-member forwards multicast data packets
if it is the parent of the sending node. Once a core is cho-
sen, it remains the core unless the network is partitioned
or the core fails. The static core election does not take into
account the distance from the core to the sources or node
mobility. This can result in considerable data packet over-
head because a core at the ‘edge’ of a mesh, away from
source nodes, will have long forwarding paths to reach the
receivers and therefore experience high latency.

Vaishampayan et al. [14] propose a protocol, called
ARPMM (Adaptive Redundancy Protocol for Mesh based
Multicasting), that improves the performance of CPUMA.
The protocol enables a thinner mesh to be created when
low mobility or high density scenarios provide enough reli-
ability without the need for full redundancy. The protocol
removes redundant data forwarding paths when it measures
reliability to be high and adds paths when reliability drops. It
adapts the network structure from a tree (single forwarding
path) to a thin mesh or to a fully redundant mesh depend-
ing on the network mobility, node density and reliability
requirements. ARPMM could be applied/used to improve
the performance of any mesh-based protocol and in partic-
ular CPUMA. Thus, ARPMM can be used in combination
with CPUMA.

The core hierarchical election for multicasting in ad hoc
networks protocol (CHEMA) [15] has been shown to
outperform PUMA [15] in static topologies. However,
CHEMA makes the assumptions that (a) the transmit power
can be raised so that core nodes can reach all mesh mem-
bers in one-hop communication; and (b) mesh data packets

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

use non-interfering channels to avoid collisions. PUMA and
CPUMA do not make these restricting assumptions.

Multicasting on Directional Antennas (MODA) is a pro-
tocol that evolved from PUMA with the aim of reducing
data packet overhead. It does this by using GPS to set the
core at the center of the mesh and covering two hops instead
of one when forwarding data packets. Each sender tries to
forward data packets to a node two hops closer to the core
of the mesh. Once the core node receives the data packet,
it makes use of directional antennas [16] to make multi-
ple transmissions in different directions to reach nodes two
hops away from it. A node one hop away from a transmit-
ting node receives the data packet but does not rebroadcast
it, thus lowering data packet overhead. However, GPS is not
always available or appropriate in all situations, and there
are other ways to determine the ‘center’ of a group of nodes.

Various distributed center-location algorithms have been
proposed to approximate the minimal-cost tree spanning all
members of a multicast group [17]. The knowledge require-
ments of such algorithms include the sources list, members
list, and distance information. Factors to determine which
node should be the center include: the maximum distance,
the average distance, and the maximum diameter to the
members, the sources, or all nodes in the network. However,
these algorithms generate considerable control overhead,
require knowledge of the network topology, or do not scale
since they must keep track of all nodes to elect a centered
core [18].

A mesh member in PUMA does not know all of the
members of the multicast group, but the mesh members
of the multicast group do know all of the sources from
the broadcasted data packets. Much like MAODV failed to
leverage Group Hellos, PUMA fails to leverage the knowl-
edge gained from the data packets and instead it simply
selects the highest receiver ID as the core of the mesh. The
core in PUMA is left to wonder the network and create a
non-optimized mesh structure.

CPUMA, we propose in this paper, uses the source and
hop count information retrieved from data packets to cal-
culate a mesh member’s average distance (measured in hop
count) to the sources. It elects and maintains the core node
in the source-based center of the multicast group mesh,
selectively rebroadcasts data packets to reduce data packet
overhead and creates forwarding paths toward the nearest
mesh member to reduce latency. It uses a single control
packet type and does not significantly increase control over-
head.

3. CPUMA

3.1. Overview

CPUMA is a mesh-based protocol that implements a dis-
tributed algorithm to elect and maintain one mesh member
(not necessarily a receiver) as the core of the multicast
group. Periodic Multicast Announcements originated at the
core, and broadcasted to every node in the network contain

all the information needed to enable the protocol to func-
tion. Every receiver connects to the elected core along the
shortest routes, and these nodes form a mesh. A source node
analyses the MAs it receives and sends a data packet to the
multicast group along the shortest path to the nearest mesh
member (not necessarily the core). When the data packet
reaches a mesh member, it is flooded within the mesh. Nodes
maintain a list of sources and the shortest hop count from
the source. This information is obtained from data packets
and CPUMA header; it is used by each mesh member to
calculate the average minimum distance (measured in hop
count) to the sources. The average minimum distance is
simply the sum of the smallest hop counts to each source
divided by the number of sources. This minimum distance
is referred to as the weight of the member with respect to
being the center of the mesh. The mesh member with the
lowest weight is elected as the core. A Mesh member will
periodically monitor its weight and if it is lower than the
weight of the current core, it will elect itself as the new
core.

3.2. The multicast announcement

The functions performed by CPUMA allow nodes to join
and leave the multicast group, participate in core election,
as well as inform all nodes of their distance to the core, their
distance to the mesh, and the next hop toward the mesh. Each
node can calculate its distance to the core of the multicast
group, and its distance to the nearest mesh member in the
multicast group. To realize these functions, CPUMA makes
use of multicast announcements; these announcements are
first broadcasted by the core and then altered and rebroad-
casted by each recipient. A MA includes the following fields
(Table I):

• Core ID: The address of the elected core.
• Core weight: The weight of the elected core.
• Group ID: The address of the multicast group.
• Sequence number: The sequence number in the latest

MA received for that group.
• Parent: The address of the next hop toward the core

if the current node is a mesh member, otherwise, the
address of the next hop toward the nearest mesh mem-
ber.

• Distance to core: One plus the distance to the core of
the neighbor in the connectivity list of this multicast
group with the smallest distance to the core.

• Distance to mesh: Set to zero for all Receivers and
Mesh members; for the other nodes, it is set to one
plus the distance to the mesh of the neighbor in the con-
nectivity list of this multicast group with the smallest
distance to the mesh.

Table I shows the format of each CPUMA multicast
announcement. MAs from multiple multicast groups are
aggregated together, eliminating the need for multiple MA
broadcasts for each multicast group. Table II shows the
structure of the CPUMA Header. The CPUMA Header is

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

Table I. CPUMA multicast announcement format.

Core ID Core weight Group ID Sequence number Parent Distance to core Distance to mesh

included in all transmitted packets. The CPUMA header
includes (Table II):

• MA count: Number of MAs contained in the control
packet (zero if data packet).

• Hop count: Number of times data packet has been
forwarded (zero if control packet).

• Reserved [1]: Empty (for future use).

After the CPUMA Header, the packet may contain one
or more MAs if it is a control packet or the data being
transmitted if it is a data packet. CPUMA does not combine
MAs and data together in one packet.

3.3. Connectivity and source lists

Every node in the network maintains a connectivity list
using the MAs it receives from its neighbors. An element in
the connectivity list contains the neighbor ID, MA recep-
tion time, and all the values of the fields in the MA as they
were received. A node will use the connectivity list to build
its own MA. The connectivity list is updated with the high-
est sequence number announcement from each neighbor
for each group and the time it was received. The sequence
number is generated by the core node and incremented every
time it sends a periodic MA. If a node receives a MA for
a known group with a better core (lower weight or equal
weight and higher ID), it deletes the current connectivity
list for that group and creates a new connectivity list start-
ing with the MA it has just received. The connectivity list
allows a node to find the neighbor with the smallest dis-
tance to the mesh, the smallest distance to the core and its
multicast parent. The node chosen as the multicast parent
depends on the status of the current node. It is the next hop
along the shortest route to the core if the current node is
a mesh member; the current node will select the neighbor
with the smallest distance to the core in its connectivity list
as its parent. If the current node is not a mesh member, its
parent is the next hop along the shortest route to the near-
est mesh member; the current node will select the neighbor
with the smallest distance to the mesh in its connectivity list
as its parent.

Every member in the multicast group also maintains a
source list. The source list contains the multicast group ID,
the source address, and the last packet ID received from
each source, all extracted from the data packets of each
source. The time the last data packet was received as well
as the hop count to the source are added to each entry in

Table II. CPUMA header.

MA count Hop count Reserved [1]

Fig. 1. Mesh broadcasting multicast announcements.

the list. The CPUMA header contains the hop count from
the source, which is initialized to zero when the source first
broadcasts its data packet and is incremented by one every
time it is forwarded. Since data packets are flooded within
the mesh, nodes maintain a packet ID cache to drop dupli-
cate data packets. Mesh members update the hop count and
time received of the source list before dropping duplicate
packets. The source list keeps the smallest hop-count from
duplicate data packets. Higher packet IDs replace older
entries. Entries older than the source timeout (e.g., 3 s) are
not used when calculating node weights.

For better understanding, let us consider the example
(Figure 1) that shows the broadcasting of MAs initiated
by the core. Tables III and IV show the source list and the
connectivity list, respectively, maintained by node 6.

Table III. Source list at mesh member 6.

Source Hop count Packet ID Time

Source 1 2 309 12 190
Source 2 4 204 12 250

Table IV. Connectivity list at mesh member 6.

Distance Distance
Neighbor to core Parent to mesh Time

1 1 11 0 12 152
5 1 11 0 12 180
7 2 5 0 12 260

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

Table V. MA fields: values for mesh member 6.

Field Value

Core ID 11
Core weight 2
Group ID 224.0.0.1
Sequence number 79
Distance to core 2
Parent 5
Distance to mesh 0

Node 6 will transmit a MA with the values shown in Table
V; the core weight is 2 since the core node is an average of
2 hops away from both sources (Figure 1); the parent could
have been node 1 or 5, but the multicast announcement
for node 1, in this example, is received first and is the one
selected.

3.4. Core election and centering

A receiver that wishes to join a multicast group from which
it has not received a MA considers itself the core of that
group. It starts sending periodic MAs with the following
values (Table VI):

Every multicast announcement interval (e.g., 3 s), the
node will increase the sequence number by 1 and rebroad-
cast the MA to its neighbors.

Unless receiving a MA for a new group, or an existing
group with a new core, nodes wait a short period of time
before generating their own announcements. Nodes prop-
agate MAs based on the best MAs they receive from their
neighbors. A MA with a lower core weight is considered
better than a MA with a higher core weight; in the case of
a tie, the higher core ID is considered better than a lower
core ID.

The core (re-)computes its weight before sending its MA
every multicast announcement interval. Every centering
interval (e.g., 15 s), every member of the multicast group
(re-) computes its weight and compares it to the weight of
the core. If its weight is smaller than the weight of the core
by the minimum threshold (e.g., 1 hop or 10%), it elects
itself as the new core, and broadcasts it to its neighbors. It
is worth noting that our simulations (Section 4) did show
that setting the centering interval equal to or less than the

Table VI. MA fields: initial values.

Field Value

Core ID Self
Core weight Invalid weight
Group ID Current multicast group
Sequence number 1 (and incrementing by 1 each time)
Distance to core 0
Parent Invalid address
Distance to mesh 0

multicast announcement interval resulted in an increase in
control packet overhead without significant improvements.
The simulations performed best overall using 15 s as the
centering interval.

A node, that receives a MA with a core ID and core weight
that are better than the values it currently holds in its group
connectivity list, updates its values and broadcasts a MA
immediately. Eventually, every node will receive a MA with
the best core ID and core weight for that multicast group.
If a receiver does not hear a MA for a period of time three
times the MA interval (e.g., 9 s), it elects itself as the core
of that multicast group and begins transmitting MAs.

3.5. Mesh establishment and maintenance

Receivers set their mesh distance to zero in their MAs to
indicate they are mesh members. A non-receiver becomes
a member if its connectivity list contains a fresh entry with
at least one mesh member with a bigger hop count to the
core than itself. An entry is considered fresh if it has been
received within two times the MA interval (e.g., 6 s). This
allows all shortest paths from the receivers to the core to be
included in the multicast mesh. Nodes transmit an imme-
diate new MA whenever their mesh distance changes to or
from zero. A node outside of the mesh sets its parent to
the neighbor in the connectivity list with the shortest dis-
tance to the mesh and sets its distance to the mesh as 1 plus
the value of its parent’s distance to the mesh. In the case
where more than one neighbor has the same distance to the
mesh, the connectivity list entry, that is received first, is
chosen.

3.6. Forwarding multicast data packets

The neighbors in the connectivity list with a smaller distance
to the mesh are the potential next hops to the multicast
group. A node that is not a member of the mesh forwards
a multicast data packet if it is the next hop of the node that
sent the data packet. Multicast data packets are forwarded
hop by hop until they reach the nearest mesh member at
which point they are flooded within the mesh. The packet
ID cache allows nodes to drops duplicates.

When a node that is not a mesh member transmits a
packet, it expects its next hop to forward it. When the next
hop forwards the packet, the node that originally sent the
packet also hears the forwarded packet. This mechanism
serves as an implicit acknowledgement that the packet was
received by the next hop. The connectivity list is updated
and the next hop is removed if a node does not receive an
implicit acknowledgement of the data packet transmission
within the acknowledgement period (e.g., 1 s).

In PUMA, all mesh members forward packets, and all
receivers are mesh members. In CPUMA, a receiver for-
wards packets only if it has mesh children or receives a
packet from outside the mesh (i.e., from a non-member
neighbor node that considers the receiver as the parent

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

node). A receiver that is a parent to a mesh member is within
the mesh; it is a hop in the path from another receiver to the
core. A receiver that is not a parent to a mesh member is in
the periphery. There is no need for receivers on the periph-
ery of the mesh to rebroadcast data packets received from
within the mesh, since no node outside of the mesh needs
to receive the packet. Table VII presents the pseudo code
for of the key functions of CPUMA.

4. SIMULATIONS

In this section, we present the simulation results comparing
CPUMA and PUMA. We do not compare CPUMA with
MAODV or ODMRP since PUMA has already been shown
to perform better than those protocols [8]. PUMA concen-
trates mesh redundancy in the region of the receiver chosen
as the core. CPUMA concentrates mesh redundancy in the

Table VII. CPUMA pseudo-code.

Compute

Node Weight

SUM(shortest path length to each source) / the number of sources

Join Group send multicast announcement

Leave Group /* do nothing – node will timeout */

Elect Core if self is a Receiver AND
 (my.coreId == Unknown) then
 my.coreId = self

 send a Multicast Announcement (MA)

/*my.x is equal to the value of x of the current node; self is

equal to current node */

end if

if self receives MA

if (my.coreId == Unknown OR
 ma.coreWeight < getGroupWeight OR
 (ma.coreWeight == getGroupWeight AND
 ma.coreId > my.coreId)) then

/*ma.x is equal to the value of x included in the MA that is

received */

 coreId = ma.coreId

 send MA

end if

end if

Compute

Distance to the

Core

if my.coreId == self then
 my.distance_to_the_core = 0

else
 my.distance_to_the_core = INVALID_DISTANCE

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

Table VII. (Continued)

For each node in connectivity list do
 if node.distance_to_the_core <

 my.distance_to_the_core

 /*node.x is equal to the value of x of node in connectivity

list*/

 then

 my.distance_to_the_core =

node.distance_to_the_core

 end if

 end For

end if

Compute

Distance to the

Mesh

if (my.coreId == self OR
 self is a receiver OR
 self is a member of the mesh) then
 my.distance_to_the_mesh = 0

else
 my.distance_to_the_mesh = INVALID_DISTANCE

For each node in connectivity list do
 if node.distance_to_the_mesh <

 my.distance_to_the_mesh

 then

 my.distance_to_the_mesh =

node.distance_to_the_mesh

 end if

 end For

end if

Process the

reception of Data

Packet

if (parent == self
OR (self is a member of the mesh AND my.number_of_mesh_children > 0))

 /* parent is the value of the field parent included in CPUMA header

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

Table VII. (Continued)

that comes with Data packet */
then
 hopcount++

/* add 1 to hop count value in MA header that is included in all

transmitted packets */

broadcast data packet with the new value of hop count

end if
Compute the

Number of Mesh

Children

My.number_of_mesh_children = 0
For each node in connectivity list do
 if node is a member of the mesh AND

node.distance_to_the_core >
 my.distance_to_the_core
 then
 my.number_of mesh_children ++;

/* the current node is responsible, in terms of
forwarding/transmission, for all mesh nodes farther from the core
than the current node */

 end if
end

region of the mesh that is located in the ‘center’ of the source
nodes, and therefore the area where data packets must travel
through. We compare both of these algorithms using NS-
2 [19]. We thank Sidney Doria for the PUMA code for
NS-2.

To illustrate the data packet overhead savings of CPUMA
we consider a simple example with one source, three
receivers and static nodes (Figures 2 and 3); solid nodes
indicate Mesh members while dashed nodes indicate non-
members. Sources and Receivers are labeled in both figures.
Figure 2 shows the mesh structure after core election in
PUMA. The highest receiver ID is elected core and the
other receivers connect via the shortest paths to it; the num-
ber next to each node indicates the number of times a data
packet is broadcasted before it reaches that node. In PUMA,
the source forwards packets toward the core; once the core
receives the packets it forwards them to all receivers. It takes
a total of nine broadcasts to reach all receivers: four broad-
casts to get from the source to the core (via nodes a-b-d)
and five broadcasts to reach the receivers (one broadcast by
the core and one broadcast by f, g, h, and i each). Fig. 2. PUMA: data packet overhead.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

Fig. 3. CPUMA after centering the core.

Starting from the structure shown in Figure 2, we make
use of CPUMA. Figure 3 shows the mesh structure after
core centering by CPUMA; first, Receiver 1 is selected as
the core; then, node c (with a smaller weight) is selected as
the core.

Receiver 3 determines a shortest path to node c (the
core) via nodes d and b and Receiver 2 determines a short-
est path to node c via nodes e and b. Now, the mesh is
optimized for multicasting traffic from the source to the
receivers. Indeed, it now only takes six broadcasts to reach
all receivers; two from the source to the core, one more from
the core to Receiver 1, b broadcasts and reaches both d and
e which each broadcasts once more to get to Receiver 2 and
Receiver 3.

We simulated the source sending 2 packets/s to the three
receivers with zero mobility for 3000 s. Table VIII shows
that CPUMA reduces the amount of data packets by almost
50% compared to PUMA (58 686 vs. 30 058). The number
of control packets is practically the same, for both PUMA
and CPUMA, since only two rounds of core re-centering, by
CPUMA, are performed. Delivery ratio is slightly improved
and latency is improved since the number of hops from
source to receivers is reduced.

Table VIII. PUMA vs. CPUMA statistics.

PUMA CPUMA

Data packets sent 5970 5994
Data packets received 17 587 17 936
Data packets forwarded 58 686 30 058
Delivery ratio 98.20% 99.74%
Control packets sent 13 357 13 053
Latency 0.057 0.035

Table IX. Simulation parameters.

Simulation parameters

Simulator NS-2 version 2.33
Simulation time 700 s
Simulation area 1000 m × 1000 m
Node placement Random
Pause time 0
Mobility model Random waypoint
MAC protocol IEEE 802.11--1997
Data packet size 512
All other parameters NS-2 defaults

4.1. Metrics

The metrics used in our evaluation are packet delivery ratio,
control overhead, data packet overhead, latency and traffic.
Packet delivery ratio is the number of data packets delivered
divided by the number of data packets that should have been
delivered. The number of data packets that should have been
delivered is the product of the number of transmitted data
packets times the number of receivers. Control overhead is
the number of control packets that are generated divided
by the number of data packets delivered. Data packet over-
head is the number of data packets transmitted divided by
the number of data packets delivered. Latency is the sum of
the delay between sending a packet (from the source) and
receiving it (by the receiver) for all data packets divided by
the number of data packets received. The data packets over-
head is more important than the control overhead since the
data packets are several (17 in our simulations) times larger
than the control packets (544 compared to 32 bytes). Traffic
is the sum of the total Kbytes transmitted. The PUMA and
CPUMA headers are equal in size, so no extra overhead is
incurred.

4.2. Scenarios

The values of the simulation parameters used in all experi-
ments are shown in Table IX. Five experiments were carried
out to compare PUMA with CPUMA.

We used scenarios similar to those found in Reference
[8]:

• Experiment 1: ‘Mobility’ assumes 1, 5, 10, 15,
and 20 m/s; Senders = 5; Members = 20; Traffic
load = 10 packets/s.

• Experiment 2: ‘Senders’ assumes 5, 10, 15,
and 20; Mobility = 5 m/s; Members = 20; Traffic
load = 10 packets/s.

• Experiment 3: ‘Members’ assumes 5, 10, 20,
30, and 40; Mobility = 5 m/s; Senders = 5; Traffic
load = 10 packets/s.

• Experiment 4: Traffic load assumes 10, 20, 30, 40,
and 50 packets/s; Mobility = 5; Senders = 5; Mem-
bers = 20.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

Fig. 4. Packet delivery ratio.

• Experiment 5: Multiple Multicast groups 1, 2, 5, 10;
Senders = 5; Members = 20; Mobility = 5 m/s; Traffic
load = 10 packets/s.

Senders and Receivers are chosen randomly from among
the 50 existing nodes. Traffic load is equally distributed
among all senders; a traffic load of 10 packets/s and five
senders mean that each sender sends 2 packets/s. R stands
for Receivers, S for Senders, M for mobility and T for traffic
in the graphs below.

Senders and Receivers are chosen randomly from among
the 50 existing nodes. Traffic load is equally distributed
among all senders; a traffic load of 10 packets/s and five
senders mean that each sender sends 2 packets/s. R stands
for Receivers, S for Senders, M for mobility and T for traffic
in the graphs below.

4.3. Results

A small improvement in the packet delivery ratio across the
board for CPUMA is shown in Figure 4. Indeed, CPUMA
delivers 0.3--2% more data packets than PUMA in most sce-

narios except in Figure 4-4. In Figure 4-4, the network is
very congested and the reduced packet forwarding allows
CPUMA to outperform PUMA by 2--3.5%. Since data pack-
ets travel toward the nearest mesh member instead of the
core, data packets benefit from the redundancy of the mesh
sooner and are less likely to be lost.

The control overhead of CPUMA and PUMA is shown to
be practically equal except in Figure 5-2. In Figure 5-2, the
number of senders increases resulting in more values used to
calculate node weights (in the case of CPUMA). The weight
calculations change faster resulting in the frequent center-
ing of the mesh, and therefore more control packets. The
increase is small (2--2.5%) since mesh members only check
their weights at 15-s intervals. If the centering interval is
lowered to 1 s, control packet overhead doubles in our 20
sender scenario without improving the results significantly.
This is because the core changes around a few nodes near
the current center without affecting the mesh structure. It
is prudent to choose a reasonable interval so the core is not
constantly changing.

The source centered mesh created and maintained by
CPUMA results in shorter paths and mesh nodes on the
periphery not forwarding data packets unnecessarily thus

Fig. 5. Control overhead.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

Fig. 6. Data packet overhead.

reducing the amount of data packets being forwarded; this
allows CPUMA to handily outperform PUMA in terms
of data packet overhead as shown in Figure 6. Indeed,
CPUMA achieves an average overhead reduction of 30%;
the reduction exceeds 50% in Figure 6-2 with 15 senders.
The reduction in data packet overhead is maintained when
faced with changes in mobility, the number of senders, the
number of receivers and the amount of traffic. A smaller
improvement than the others (14--20%) is seen in Figure
6-3 because as the number of receivers approaches 100%,
more nodes have to be included in the mesh and PUMA and
CPUMA construct similar meshes.

A large difference in the latency of CPUMA compared
to PUMA is shown in Figure 7. The latency for CPUMA in
Figure 7-1 averages 0.11 s compared to 0.26 s (more than
two times bigger) for PUMA. Latency averages 0.09 s for
CPUMA compared to 0.29 s for PUMA (more than three
times bigger) in Figure 7-2. The latency difference is more
pronounced (four times bigger) as the number of receivers
increases, as shown in Figure 7-3, and (six times bigger) as
traffic increases in Figure 7-4. In CPUMA, this improve-
ment is due to nodes forwarding data packets toward the

mesh, and having a mesh near the center of all of the senders
in the network. In PUMA, a sender node would instead send
its data packet toward the non-centered core which may be
at the other side of the network. This increases the length of
the path data packets must travel before reaching the mesh
and results in a longer delay reaching the receivers.

The difference in the traffic generated by CPUMA com-
pared to PUMA is shown in Figure 8. All simulations show
that CPUMA produced an average 18.4% less traffic than
PUMA. The best results at an average of 21.8% less traffic,
shown in Figure 8-2, correlates to the data packet overhead
reduction shown in Figure 6-2. CPUMA only has an average
of 14.1% less traffic than PUMA in Figure 8-4, but averages
2.3% higher packet delivery ratio.

A traffic ratio, which compensates for the difference in
the packet delivery ratio of the two algorithms, is created
by dividing the data received by the total traffic sent and
forwarded. In all four experiments, CPUMA outperforms
PUMA as shown in Figure 9. CPUMA achieves a ratio
over 100% in Figure 9-3. The broadcast nature of MANETs
allows one packet sent to be received by multiple receivers.
In CPUMA, the receivers on the outside edge of the mesh

Fig. 7. Latency.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

Fig. 8. Traffic (Kbytes).

do not rebroadcast data packets, allowing them to save
unnecessary traffic being sent and achieve a traffic ratio
over 100%. In the best-case scenario for PUMA (all nodes
being receivers), PUMA is limited to just short of 100% due
to control packets since all receivers will rebroadcast data
packets regardless.

CPUMA outperforms PUMA in the multiple multicast
group experiment as shown in Figure 10. CPUMA generates
an average of 18% less data packet overhead than PUMA in
Figure 10-2. CPUMA generates an average of 17.2% less
traffic in Figure 10-4 due to the lower data packet overhead
even at the cost of higher control packet overhead. Latency
for CPUMA averages 0.12 s compared to 0.19 s for PUMA,
as shown in Figure 10-5, a 33% decrease in latency.

Core stability is a feature of PUMA, but not of CPUMA.
In Reference [8], the authors report that frequent core
changes would create additional overhead and significant
packet drops because the mesh would always be in a state
of reconstruction. To evaluate the impact of core changes
on CPUMA, we created a scenario of frequent core changes
shown in Figure 11 by extending experiment 1; the re-
centering interval of CPUMA assumes 1, 3, 9, 15 and 30 s.

Our simulations yielded 15 s to be the best value overall
for the re-centering interval. Control overhead is highest
when we re-center the mesh every second and the nodes are
moving at 20 m/s as seen in Figure 11-2.

When the re-centering interval is equal to or bigger
than the multicast announcement interval, control overhead
remains stable since MAs transmitted during re-centering
reset the MA announcement timer. Since multicast data are
forwarded toward the nearest mesh member instead of the
core, routes outside of the mesh are not affected by core
changes in CPUMA.

To further study the effects of re-centering, we modi-
fied the algorithm so that nodes that are neighbors of the
current core would not be able to become cores. Simu-
lations were run using the parameters of experiment 1,
but limiting the ability to claim core status to nodes 1, 2
and 3 hops away from the current core. The results are
shown in Figure 12. For all simulations, packet delivery ratio
and latency remained relatively the same, control overhead
was lower by only an average of 0.2%, but data overhead
increased by an average of 5% since the mesh was not
optimized.

Fig. 9. Traffic ratio.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

Fig. 10. Multiple multicast groups.

Fig. 11. Re-center intervals.

Fig. 12. Re-center away from core.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

An efficient mesh-based multicast routing protocol E. Astier et al.

Table X. Control overhead, data overhead and latency.

Exp no. 1 2 3 4 All

CPUMA control Avg. 10.98 13.05 11.45 7.48 10.57
CPUMA control Std. Dev. 0.5 1.79 8.43 1.78 4.29
PUMA control Avg. 11.55 11.87 12.07 7.25 10.54
PUMA control Std. Dev. 0.36 0.51 7.98 2.44 4.14
CPUMA data Avg. 151.89 139.4 142.3 162.0 149.8
CPUMA data Std. Dev. 1.82 8.21 51.39 7.04 23.96
PUMA data Avg. 186.87 181.6 173.3 200.8 187.2
PUMA data Std. Dev. 4.55 2.83 68.48 12.93 31.0
CPUMA latency Avg. 0.11 0.10 0.13 0.96 0.35
CPUMA latency Std. Dev. 0.01 0.01 0.06 0.48 0.46
PUMA latency Avg. 0.26 0.30 0.50 6.03 1.93
PUMA latency Std. Dev. 0.02 0.07 0.40 3.34 3.08

Table X shows the average control packet overhead, data
packet overhead, and latency as well as their standard devi-
ation for both protocols. The experiments listed refer to
those described in Section 4.2. Core node changes origi-
nate from only a few nodes around the existing core when
the weight condition is met and only at specified intervals;
therefore, CPUMA does not overwhelm the network with
control packets. Standard deviation of control packets for
CPUMA is higher in experiment 1 (low to high mobility)
and experiment 2 (few to many senders) because high ranges
of both may result in more core node changes. In exper-
iment 3 (few to many receivers) and experiment 4 (low
to high traffic load) both algorithms have similar control
packet characteristics. Eliminating unnecessary data packet
transmissions considerably decreases the data packet over-
head of CPUMA compared to PUMA in all experiments.
Experiment 3 yielded the highest standard deviation for both
protocols because the size of the mesh increases with the
number of receivers. Even as the size of the mesh increases
to encompass all nodes, CPUMA yield savings over PUMA
since the nodes on the outer edge of the mesh do not broad-
cast data packets. Data packet forwarding toward the nearest
mesh member instead of the core node lowers latency in
all experiments. Networks with lower node densities ben-
efit more from CPUMA. The largest difference is seen in
experiment 4 as the traffic load overwhelms the available
bandwidth. The mesh constructed by CPUMA not only
restricts redundancy to the region containing receivers but
also centers it based on the sending nodes and removes data
packet forwarding away from the edges of the mesh.

5. CONCLUSION

The CPUMA is based on leveraging data packets to cen-
ter the core node, forwarding data packets toward the
mesh instead of the core to reduce latency. Additionally,
in CPUMA receivers selectively forward data packets in
an effort to reduce data packet overhead. The mesh con-
structed in CPUMA is centered with respect to the senders

and in the area where data packets must travel to get to
the receivers. CPUMA maintains a significantly lower data
packet overhead and latency than PUMA while maintain-
ing or improving packet delivery ratio and not significantly
increasing control overhead regardless of mobility, traffic,
senders or receivers in the network.

REFERENCES

1. Lee SJ, Su W, Hsu J, Gerla M, Bagrodia R. A perfor-
mance comparison study of ad hoc wireless multicast
protocols. Joint Conference of the IEEE Computer and

Communications Societies 2000; 2: 565--574.
2. de Morais CordeiroC, Gossain H, Agrawal DP, Multicast

over wireless mobile ad hoc networks: present and future
directions. IEEE Network 2003; 17: 52--59.

3. Wang Z, Liang Y, Wang L. Multicast in mobile ad hoc
networks. Computer and Computing Technologies in

Agriculture 2008; 1: 151--1164.
4. Xie J, Talpade R, Mcauley A, Liu M. AMRoute: ad hoc

multicast routing protocol. Mobile Networks and Appli-

cations 2002; 7: 429--439.
5. Sinha P, Sivakumar R, Bharghavan V. MCEDAR: mul-

ticast core-extraction distributed ad-hoc routing. IEEE

Wireless Communications and Networking Conference,
1999; 1313--1317.

6. Junhai L, Liu X, Danxia Y. Research on multicast rout-
ing protocols for mobile ad-hoc networks. Computer

Networks 2008; 52: 988--997.
7. Kaliaperumal B, Jeyakumar A. Adaptive core-based

scalable multicasting networks. IEEE India Conference,
2005; 198--202.

8. Vaishampayan R, Garcia-Luna-Aceves JJ. Protocol for
unified multicasting through announcements (PUMA).
IEEE International Conference on Mobile Ad-hoc and

Sensor Systems, 2004.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

E. Astier et al. An efficient mesh-based multicast routing protocol

9. Royer EM, Perkins CE. Multicast ad-hoc on-demand
distance vector (MAODV) routing. Internet-Draft, draft-
ietf-manet-maodv-00.txt, July 2000.

10. Perkins C, Roger E. Ad hoc on demand distance vector
(AODV) routing. IEEE Workshop on Mobile Computing

Systems and Applications, 2002.
11. Vaishampayan R, Garcia-Luna-Aceves JJ. Robust

tree-based multicasting in ad hoc networks. IEEE Inter-

national Conference on Performance, Computing and

Communications, 2004; 647--652.
12. Ballardie T, Francis P, Crowcoft J. Core based trees

(CBT). ACM Computer Communication Review 2003;
23, 85--95.

13. Park V, Corson M. A highly adaptive distributed
routing algorithm for mobile wireless networks.
IEEE Conference on Computer Communication, 1997;
1405.

14. Vaishampayan R, Garcia-Luna-Aceves JJ, Obraczka
K. An adaptive redundancy protocol for mesh based
multicasting. Computer Communications 2007; 30,
1015--1028.

15. Spohn MA, Garcia-Luna-Aceves JJ. Bounded-distance
multi-clusterhead formation in wireless ad hoc networks.
Ad Hoc Networks 2007; 5, 504--530.

16. Vaishampayan R, Garcia-Luna-Aceves JJ, Obraczka K.
Multicasting On Directional Antennas (MODA). IEEE

International Conference on Mobile Ad-hoc and Sensor

Systems, 2005; 659--664.
17. Karaman A, Hassanein HS. Core-based approach in mul-

ticast routing protocols. International Symposium on

Performance Evaluation of Computer and Telecommu-

nication Systems, SPECTS, 2003; 525--532.
18. Thaler D, Ravishankar C. Distributed center-location

algorithms: proposals and comparisons. IEEE Network-

ing the Next Generation 1996; 1, 75--84.
19. Breslau L, Estrin D, Fall K, Floyd S, Heidemann J,

Helmy A, Huang P, McCanne S, Varadhan K, Xu Y,
Yu H. Advances in network simulation. IEEE Computer

2000; 33: 59--67.

Authors’ Biographies

Eric Astier received the B.S from Florida Institute of Tech-
nology and M.S. from University of Montreal. His research
interests include routing in ad hoc networks.

Abdelhakim Hafid is Professor
at département d’Informatique et
de recherche opérationnelle de
l’Université de Montréal, where he
founded the Network Research Lab
(NRL) in 2005. Prior to joining U.
of Montreal, he was with Telcordia
Technologies (formerly Bell Commu-
nication Research), NJ, US, faculty

at University of Western Ontario, research director at
Advance Communication Engineering Center, Canada,
researcher at Computer Research Institute of Montreal,
Canada, and visiting scientist at GMD-Fokus, Germany.
Dr. A. Hafid has extensive academic and industrial research
experience in the area of the management of next gener-
ation networks including wireless and optical networks,
QoS management, distributed multimedia systems, and
communication protocols.

Sultan Hamadi Aljahdali, Ph.D.
received the B.S from Winona State
University, Winona, Minnesota in
1992, and M.S. with honor from
Minnesota State University, Mankato,
Minnesota, 1996, and Ph.D. Informa-
tion Technology from George Mason
University, Fairfax, Virginia, U.S.A,
2003. He is the dean of the college

of computers and information systems at Taif University.
His research interest includes software testing, developing
software reliability models, soft computing for software
engineering, computer security, reverse engineering, and
medical imaging. He is also a member of ACM, IEEE, and
ISCA.

Wirel. Commun. Mob. Comput. (2010) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

